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AImtraet--We consider flow in a centrifugal force field of a non-dilute suspension with particles 
or droplets of two sizes. The volume fraction and the velocity fields are determined assuming 
small convection and shear terms. The resulting flow field is quite different from that in a 
gravitational settling of a similar mixture. In particular, the volume fraction is a function of 
time and radius in the sectors separated by kinematic shocks and the settling velocity is a 
non-monotonic function of the particle size. 

1. INTRODUCTION 

We consider the centrifugal separation of a mixture in which the dispersed phase consists 
of particles (or droplets) of the same density b u t  of two different radii, 2" > 22*. The 
volume fraction of the dispersed phase is taken sufficiently large for particle interactions 
to be important. The cylindrical container is assumed to be long so that end plate effects 
can be neglected. 

This problem is the extension of two analyses: the exact solution (Grmnspan 1983) for 
a rotating mixture consisting of uniformly sized particles and the gravitational settling of 
a polydisperse medium considered in Greenspan & Ungarish 0952). However, rotational 
accelerations introduce some significant new features in the transient process under 
consideration. 

Initially, the homogeneous mixture that occupies the interior of the cylinder is in solid 
body rotation with the walls at angular velocity fl*. (This initial state is easily obtained 
in practice when the spin-up time scale is smaller than that of the separation.) Sub- 
sequently, the mixture region is bounded by a sediment layer on one side and a purified 
fluid on the other (see figure 1). Surfaces of discontinuity, i.e. kinematic shocks, separate 
the various domains. Another discontinuity develops inside the mixture to divide this 
region into a sector in which particles of both sizes are present and a second where the 
component having the larger radial velocity is absent. At time zero, the first sector occupies 
the whole cylinder but it eventually narrows and disappears. Separation in the second 
sector of uniformly sized particles is then completed when the shocks labeled 0 and 2 meet. 

The mathematical formulation of the problem is given in terms of time or space 
averaged variables of velocity, v, pressure p, shear stress, t and the volume fraction, m (Ishii 
1975, Delhaye & Achard 1976). Appropriate subscripts, l, 2, C, D designate variables 
corresponding to particles of different sizes, the continuous phase and the averaged 
dispersed phase. For sector (I) (see figure 1), where particles of both sizes are present, we 
use the equations of motion obtained in Grmnspan 0953) ([2.13]-[2.16]) and modified for 
a coordinate frame rotating with f~+* For sector (II) the equations [2.1]-[2.6] of Grmnspan 
(1983) can be directly applied. 

A main point in the theory of Greenspan is the assumption that interactions in a 
non-dilute suspension of different sized particles can be described essentially by Stokes' 
drag law using the local effective viscosity of the mixture 

~k 
Mk = K/tcD(~) W'V (Vc -- Vk). [1.1] 
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Figure 1. Qualitative description of the flow regions in a long axisymmetric rotating cylinder 
containing a suspension of heavy particles of two different sizes; ,y, "t, ~,2-volume fractions of 

dispersed phase, larger and smaller particles. 

where Mk is the drag force per unit volume of mixture acting on the dispersed phase, k, 
/z c is the viscosity of the continuous phase, } < ~¢ <1 is the viscosity ratio in the 
Hadamard-Rybczinski extension of Stokes' drag and ~--~D = ~t + ~2 is the volume 
fraction of the dispersed phase. Furthermore, 

Mc + Mi + M2 = 0. [1.2] 

The drag correction function used in the present investigation is, as suggested by Ishii & 
Chawla (1979): 

0~ ~ - -  2"5~M 
D(=)= l--- 

=u/  
[1.3] 

where ~M is the maximal packing volume of the dispersed phase. However, any form of 
D(~) can be incorporated in the subsequent analysis. 

Assuming that gravity and the viscous and turbulent stress terms are negligibly 
small as compared to the Coriolis and the interfacial drag, and that the gradient of the 
averaged pressure field is the same for all phases, the main dimensionless parameters of 

2/~. I, and the ratio the problem are the relative density difference, E, the ratio of diameters * * 
between the drag and Coriolis forces acting on the larger particle ~ = (2/9K)fl*A~*2/v~ 
(where v ~ is the kinematic viscosity of the continuous phase). The present analysis is based 
on the assumption [E[~ 1. 

The value of/~ may vary considerably in problems of practical interest, so that for 
v~=0.01 cm2/sec (water) and f l*=  1000see -~, p---200 or 0.02 for a solid particle of 
radius 1 mm or 0.01 ram. However, it is important to note that the validity of Stokes' drag 
becomes questionable when ~, which turns out to be a modified Taylor number, is not 
small. Herron et  al. (1975) have shown that the Stokes' drag on a single spherical particle 
in a rotating environment requires corrections of 0(v/~), Karanfilian & Kotas (1981), who 
investigated experimentally the motion of a single particle in a centrifuge, found 
considerable disagreement with Stokes' drag at large Taylor number. However, this 
deviation, which undoubtedly arises from Taylor-Proudman columns and the tendency of 
rotating flows to bc two-dimensional, is notably affected by the presence of other particles 
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in a non-dilute suspension. For example, the mean distance between spherical particles is 
less than two diameters for ~ = 0.1. To our knowledge, this is still an uninvestigated 
matter. Therefore, bearing all this in mind, we shall apply [1.1] without restriction on 13. 
In this regard, the comparison of  the results obtained below with simple experiments will 
perhaps be informative. 

2. THE F L O W  IN T H E  SEPARATING REGION, SECTOR (1) 

We use a cylindrical coordinate system (r, 0, z) rotating with angular velocity [1" 
around theaxis of symmetry, z, (figure 1) and denote by qf= u / +  v / t h e  velocity of  any 
phase f. The axial motion is insignificant in the long container under consideration. For 
centrifugal settling of uniform spherical particles a similarity solution was obtained in 
Greenspan (1983) where ~, (uf/r) and (v//r) are functions of the time t only. However, for 
two or more different particle sizes, it can be shown that such a solution in both sectors 
(I) and (II) (figure 1) is inconsistent with the continuity conditions across the shock 1. 
Therefore, we can assume that the similarity still holds in sector (I), but in sector (II) the 
variables ~, (u:/r), (vl/r) must depend on r as well as on t. 

We introduce the following scales for length, velocity, time, density and pressure, 
respectively: r0* (the outer radius), U* = ]~it]*r g, t = r~/U*, p~, 1 , ~P c[E [(fl*r 0*) 5. In sector 
(I), velocities are assumed proportional to the radial distance, and the volume fraction is 
a function of time only 

o~f = oe/(t); 

q~ = U*r[U/(t)P + Vj(t)~], [2.1] 

P* = 1 P ~(l~*r *)2r2[1 + IE IP(t)], 

where 

1 
E= o - -Pc ) ,  [2.2] 

and an asterisk denotes a dimensional variable. The general equations of  motion for the 
fluid and each of  n particle phases as distinguished by diameter are 

~, + 2Uk~ k ~- O, [2.3] 

ce~ + 2 U : c  = O, [2.4] 

oe c + oe = 1, [2.5] 

(1 + ~)[l~l(U;, + U : -  v : ) -  2 v ~ ] -  ~ _ _  - P  4 
D(~)  U ~ -  U~ 

/3 ~.k 2 

(1 + E)[[~I(V;, + 2U, Vk) + 2U~ = D(~)  V c -  vk 

/3 ~'k 2 ' 

[2.6] 

[2.7] 

I~lfu~ + u p  - vc ~) - 2vc  = - e  - 1 - ~ - ~  - ' [2.8] 
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]¢](V~ + 2UcVc) + 2U~ = 
D(a) (Vc ~/V_V_~k2\' ~ [2.9] 

fl / ]" 

The notation is as follows: prime denotes differentiation in time, and 

2 f~*2 .2 
fl = - - ,  [2.10] 

9 x  v *  

2" [2.111 
2k = 2--~1 ' 

= s o  = ~ ~k' [2.12] 
k = l  

If ~b k is a property of  the dispersion associated with the particles of  radius 2 k then the global 
property of the dispersed phase is: 

1 
%~k. [2.13] 

In particular 

1 1 " 1 1 (j~ Ot k 
2.. ~tkUk; %Vk; -- [2.14] 

(Although we consider only k = 1, 2 the formulation is given for the more general case 
of n particle sizes.) 

1 " ~ Un; [2.15] 
= - .  Z - 1 Uc 1 - ~ = 1  

thus, the volumetric flux of  the mixture, ~Uo + (1 - ~ ) U c  is identically zero. This is a 
consequence of  the similitude expressed by [2.1]. 

The position of  the particle o f  radius 2k which was initially at rk(O) is 

fo rk(t)  = rk(O ) exp Uk d t .  [2.16] 

Since integration of  [2.3] yields 

( ;o )  % ( O = % ( 0 )  exP - 2  Ukdt  , [2.17] 

the particle path is also given as 

X/%k(O) [2.18] rk(t ) = rk(O ) ~ "  

The positions of  particles initially in contact with the inner (r = r~) or outer (r = 1) walls 
are of special importance because they define the locus of the shock boundary separating 
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sectors (I) and (II) which is then 

rs(t ) =. 

max ri v / ~  k ~ '  E>0 
[2.19] 

(We note that sector (II) does not develop if E > 0 and ri = 0.) Multiple shocks occur in 
the separating core and the velocity of the fastest, shock 1 is 

= tmax U,, E>O 

ad~ I min Uk, ~ < 0 .  
[2.201 

The velocity ado of shock labeled 0 in figure 1 which separates the sediment from the 
mixture is found from the conservation of the volume flux: 

• , (U, - a¢o) = - ~ o .  [2.21] 

In order to determine ~k(t) and the velocities, [2.3]-[2.9] must be integrated. After some 
algebra, a standard initial value system of (3n + 1) equations is obtained (Appendix A). 
However, some interesting results can be obtained in the limit E-,0, as follows. 

Upon eliminating P from [2.6] and [2.8] (wi th ,  = 0) and substituting in [2.7], a system 
of equations for the radial velocities is obtained, which by [2.15] may be reduced further 
to 

UkCkk "+" ~ CkjUj = d(*t)s [2.22] 
i = 1  j,#k 

where 

e D(~t). 
s =  ; d(*t)= fl , 

Ckk=4~k2 +d2(ot) Ii~-~k (Ak-I- ~---~)q- ~---~]; 

2 Ckj----d (ot)-l--~_~ (Ak d- ~--fi.2); 

,t 1 F 1 .  1 1 ~ ~t_&k 
Ak= 1--0ta 2 A~' a---2=~k=12k 2" 

Equation [2.7] with E = 0 becomes: 

2,82k 2 vc-  v, = ~ uk. [2.23] 

Equations [2.22]-[2.23] explicitly define the radial velocities and the azimuthal slip 
velocities as functions of ~k(t). The latter variables then emerge from the straightforward 
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(numerical) integration of  [2.3], with the appropriate initial conditions g,(0). (Initial 
conditions for U, cannot be imposed on the system obtained for E = 0. The neglected terms 
[elU;, are important at short times, t -,, [El, when the velocities adjust to the values, which 
satisfy [2.22]. However ~k remains essentially unchanged during this short interval.) 

Individual expressions for V, and V~ cannot be obtained from the equations with E = 0 
because these variables are essentially governed by nonlinear effects. However, an equation 
for the mass averaged azimuthal velocity, 

Vm=[(1--Ot)Vc +(l +6") ~ OtkVk] (l 

in the limit E-,0, can be obtained with a little algebra: 

V~, = ~ 0t;,(s- 2(Vc- Vk)). [2.24] 
k = l  

Consider next the limit of  a dilute suspension, ~k-"O. In this case [2.22]--[2.23] become 

Uk = s 1 + 4(#2,2) 2 [2.25] 

Vc - Vk = ( 2 # 2 , 2 ) U k  = s 2(#2/c2)2 
1 + 4 ~ 2 k 2 )  2" [2.26] 

For  s = 1 (i.e. p* > p *), the dispersed particles are expelled towards the periphery and lag 
the fluid in the azimuthal direction. Figure 2 shows that these velocities vary considerably 
with (#Ak2), which represents the ratio between the Coriolis and drag forces. No significant 
relative (slip) motion between the phases is possible when the drag force is large, in which 
case Uk--'O and Vk'-" Vc as #2,2--,0. On the other hand, when the drag is negligibly small 
(i.e. large particles, (#2k2) - '  00) there is no mechanism to supply the azimuthal acceleration 
required for a radial motion, and once again Uk-"O. Since Uk--,0 in both the small and 
large particle limits, the radial velocity is not a monotonic function of  the size of  the 
particle 2. There is an extremal value of  the radial component  of  velocity corresponding 
to a particle of  radius 2opv The implication is that small particles may overtake larger 
particles in the radial direction. (This is expected for # > 0.5 but at such large values the 
theory may be invalid as discussed earlier.) 
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0 i I 1 l 

0 0.5 I 2 3 
small particles 2 k or slow rotation j(~ X 
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azimuthal component 

I 
4 
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or fast rotatiOn 

Figure 2. The components of the reduced slip velocity for a dilute suspension vs. ratio between 
Coriolis and Stokes' forces, s -- 1 or - 1 for heavy or light particles. Linear (E = 0) solution. 
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Using [2.24], [2.26] and the initial condition Vm(0)= 0, we conclude that 

I'm ~ s [ a ( t )  - -  at(0)], fl < 1 [2 .'27] 
V m ~ 0  , F>>l .  

A considerable backward rotation develops for small / /which results from the flux of  mass 
and the conservation of angular momentum. 

For moderate values of  at there are some quantitative modifications in the above results 
which are significant as ~t ~atu. In certain circumstances, for finite 0t, the slower dispersed 
constituents can be dragged by the continuous phase in a direction opposite to that of  Uo 
(see [2.15]). 

Some numerical examples are given in section 4. The results for the limit E ~ 0  are 
compared to the exact solution and good agreement is observed. For  particles of  only one 
size, (n = 1), the present analysis reduces to that presented in Greenspan (1983). 

3. THE F L O W  IN T H E  S E P A R A T I N G  REGION,  S E C T O R  (II) 

In the problem under investigation, there are two dispersed components in sector (I), 
corresponding to the particles of  radii it* and it*. The slower component  j ( / =  1 or 2) will 
be left behind in sector (II) by the shock labelled 1 in figure 1, and obviously at = Qtj in this 
sector. 

Using the scaling rules of  section 2, the dimensionless variables for velocity and 
pressure are as follows: (uo, vo) = r(f,  g);, (Uo Vc) = r(F, G); p = r2([E[-I + p) .  Here f,  g, 
F, G and P are functions of  t and r. It follows that the continuity equations are 

a ~  1 ~ r2ot f a t + r ~  = 0 ,  [3.11 

&t 1 c~ 
- I - -  w -  r 2 ( 1  - -  n)F  = 0; 

~t r o t  
[3.2] 

the linear momentum equations are 

--2g=S--~rr r2p + ( F - f ) ;  [3.31 

2f = T (G - g);  [3.4] 

- 2 G  = - - -  r2p F - f )  ; [3.5] 
2r 1 -- ~t 

where 

2 F =  1--~ D(~) (G--g) ;  

flj = flitj2 for j = 1 or 2, 

[3.6] 

[3.7] 

whichever specie inhabits sector (II). A formula for the volume flux is obtained from 
[3.1]-[3.2] 

C(t) 
~ f +  (1 - u)F  = r2 . [3.8] 
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Since this flux is continuous across the shock 1, it follows that C(t)  = 0 and 

0~ 
F = 1 - g f '  [3.9] 

a result valid for all E. 
The pressure term may be eliminated from [3.3] and [3.5] to obtain 

1{  D(=) 1 ( F - f ) }  [3.10] 
( a - - g ) = ~  s-~ ~ - j  l ~  

Upon substituting [3.9]--[3.10] in [3.4] it is found that 

D(=) 
- - S  

f = f ( r ,  t) = f ( a )  = flJ (D(_._=) 1 y '  [3.11] 

4q-~, flj 1 -o~ ) 

The function f(=),  figure 3, decreases monotonically with = only for fli < 0.7 but  otherwise 
has a relative maximum. This behavior significantly affects the solution obtained for sector 
(II). 

Equation [3.11] explicitly defines the radial (reduced) velocity in terms of  the volume 
fraction =. fThe same relationship was obtained in [2], but there = was a function of  t only.) 
The continuity of  the volume flux across shock 1 (whose reduced velocity is q/l, see [2.20]) 
is expressed as 

ct(f(=) - q/l) = %+(uj + - q/i) on r = r~(t) [3.12] 

where + "denotes values in sector (I) and rs(t) is the boundary between sectors (I) and (II), 
figure 1. Since the terms on the r.h.s, are known, [3.12] implicitly defines the boundary 
condition on a at r = r,(t), i.e. 

= = =,(t) on r = rs(t ) . [3.131 

Recall that r,(t) is obtained from the solution in sector (I), see e.g. [2,19]. 
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Figure 3. The reduced radial velocity in sector (II) vs volume fraction, flj -= ratio between Coriolis 
force and Stokes'  drag. Linear solution; a M = 0.6. 
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The problem has now been reduced to the task of finding =(r, t) because the other 
variables can then be obtained from [3.11], [3.9] and [3.10]. The values of a(r, t) are 
obtained as follows. 

The substitution of [3.11] into [3.1] yields 

¢3---t + r2af(ot ) = 0 [3.14] 

which can be rewritten as: 

1 8-~ + r ~f(a) ~r = - 2 a f ( a ) .  [3.15] 

This equation can be solved by the method of characteristics, with the initial condition 
[3.13]. The solution is given in the following parametric form 

where 

r 2  - 1 l (a----) r2(7)~b (a,(7)) (a) 

1 I i  da 
t = y  - -~  ,(7)~b(a)=Y +~b(a)-~k(a,(y)) (b)] 

[3.16] 

1 f dot [3.17] 
~ ( = )  = =f(=), ~'(=) = - ~  j ~ - ~ )  

and ~,(7), r,(7) are the initial values that satisfy [3.13] with the parameter Y replacing the 
time variable of the shock locus. The shock conditions are satisfied at t = Y, of course. 

The value of a along a characteristic curve emanating from ~t~(7~ ) at r = r,(Tt), t = 7~ 
is easily calculated but the value of at for some specific t~ and r~ requires a cumbersome 
iterative search for the appropriate value of 7. Therefore the following approximate 
procedure may be useful. Denote %(0 and ~(t) as the values of = on the characteristics 
emanating at t = 0 and t = Y. We anticipate that %(0 - %(0 ~ [a,(7) - %(7)] =- fi(7). This 
suggests a method of calculation based on the expansion 

~(t)  = Oto(t)+ ~ [~(y)ltXt(t), t_> Y [3.18] 
I - I  

with 

XI = I, Xt= O, 1>2 a t t = 7 .  [3.19] 

For small 6 ( ,~ %(7)), substitution of [3.18]-[3.19] in [3.16b] and the expansion of ~k (u) and 
~(0t~) in Taylor series around %(t) and %(7), respectively, yields 

~(%(t)) 
xl(t) = ~(%(7)-------)" [3.201 

The similar treatment of [3.16a] shows that on the characteristic emanating at t = 7 

r ~ ~ -- r ) (7)  ~ (~ (7 ) )  
~ ( = 0 ( t ) )  " 

[3.21] 
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Upon combining these results, we conclude that on a characteristic 

[~v(t) -- a0(t)]r z ~ [a,(~) -- ~o(y)]r,2(~) = const. [3 ..22] 

This solution for • is invalid when the initial velocity of  the characteristic is larger than 
that of  shock 1, i.e. f[~,(?)]+a~(Y)f'(~,(7))>q/~(7), or when characteristics intersect. 
Although these possibilities cannot be excluded for the whole zange of  parameters, they 
will not be considered in the present work. 

Since the velocity of  shock 2 is that o f  a dispersed particle, i .e . f (a) ,  and the velocity 
along a characteristic i s f ( a )  + af'(~), this shock is unstable fo r f ' ( g )  > 0. This occurs only 
for larger values of/~ and moderate a, (figure 3), in which case an expansion fan is formed 
instead. In particular, if f '(a) > 0 at t = 0 and E > 0, this fan is centered at ri. Each ray 
in this fan satisfies [3.15], and is described by expressions similar to [3.16] but with r, 
replaced by r~ (the center o f  the fan) and a~ replaced by c/(which has a value between 0 
and a~(0)). The interface is the last characteristic wave in this fan corresponding to ~ = 0. 
For small ~ the solution is approximated by a straightforward series expansion of  [3.16] 
which yields 

1 + ca = 1 + ca exp [ - 2f(O)t] on 

[3.23] 
r = r,(1 + c(a - ~)] exp [f(O)t] 

whe~ 

c =f ' (o) / f (o) .  

For larger values o f  0~ the solution is obtained by numerical integration. 
When shock 2 is stable, its position can easily be approximated by using the first term 

in [3.18] and [3.1] to obtain 

r2(t) = r2(0) ~ [3.24] 

After the separation of  the mixture in sector (I) (t > tt), shock 0 is in direct contact 
with sector (II) and its velocity is given by the continuity requirement 

[3.251 

Once again, the approximation ~ - a 0 ( t )  yields a simple result, namely 

ro = ro(tl) /~_MM -" O~o(tl) 
~/O~U - -  ao(t) 

[3.26] 

where ro(ti) is the position of  shock 0 at t = t~, obtained from the solution in sector (I). 

4. NUMERICAL EXAMPLES 

Sector (I)  
We consider the following illustrative examples 

Example 22 ~ al(~ a2(0) 

A 0.5 0.1 0.1 0.1 
B 0.5 10.0 0.1 0.1 
C 0.1 0.1 0.1 0.1 

21 = 1, of  course, and s = 1. 
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Some results are presented in figures 4 and 5. Note that in example A, U~ > U2, at 
decays faster than g2, while the opposite occurs in B where U2 > U~. As ~ ~ 0  the values 
Um and U2 predicted by [2.25] are approached, but at the initial stage the discrepancies are 
large. This reproduces the combination of two effects--the hindering of the particles on 
each other and the increase of drag with a--which may increase or decrease the radial 
velocities according to the parameters of the problem. In particular, the radial velocities 
increase with time in A and decrease in B. 

In example C (not displayed in graphs) it was found that U2 is negative, which reflects 
the fact that the small particles are dragged by the continuous phase moving towards the 
inner wall of the cylinder. However, I U21 is smaller than [ad0[, the velocity of the shock on 
the sediment, and component 2 settles despite its negative velocity. 

The conditions behind the shock 1 are also shown in figures 4-5. It is observed that 
as volume fraction of the fastest component decays, the shock becomes "weaker", 
therefore the corresponding values of the slower component and the velocities as well are 
almost unaffected across the boundary between sectors (I) and (II). This is expected 

.14 

F 

o.o' f , 
0 5 I0 15 20 25 t 

(a) 

IO 

9 

8 
U(xlO 2) 

U! for a -,,0 

O 

f 

U 2 fora "~'O 

I I I | I 
5 iO 15 20 25 

t 

Co) 

Figure 4. (a) Example A (~2 = 0.5, p = 0 . I ,  s = I, ccu = 0.6). Volume fractions cq and 0~ in sector 
(I) and co, behind shock 1 vs time. Linear solution. CO) Example A. Reduced radial velocities, U~ 

and U2 in sector (I) and f~ behind shock 1 vs time. Linear solution. 
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Figure 5. (a) Example B (2 2 = 0.5, ~ = 10, s = l, ~'M = 0.6). For  legend see figure 4(a). (b) Example 
B. For  legend see figure 4(b). (c) Example B. The reduced azimuthal  velocities in sector (I) vs time. 
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because the environments of the particles in sectors (I) and (II) become practically 
identical. Since//has a dominant influence on the behavior across the shock, the volume 
fraction and the radial velocity increase in A and decrease in B. 

As a check on the linear solution (with ~ = 0) numerical solutions of  the nonlinear 
system were compiled for E = 0.1. Most of these solutions are not shown here. It was found 
that in example A the agreement between the linear and nonlinear E = 0.1 results are 
excellent. In example B, U1 displays a considerable overshoot (which reaches a value of 
about 0.35 at t--0.09) in the initial stage but eventually converges toward the linear 
solution. The reason for this behavior is as follows. The initial conditions 
Ve(0) = Vk(0)= Uk(0)= 0 used for the nonlinear case give rise to a considerable initial 
radial acceleration of the dispersed particles, which is a consequence of the unbalanced 
buoyancy force. Therefore, the heavier particles are thrown towards the periphery and 
their radial velocity increases. When the drag coefficient is relatively large (case A) the 
particle cannot develop a considerable radial velocity. But for small drag (case B and 
especially component 1) a large velocity may be achieved before other forces decelerate 
the particle. (As an indication of the orders of magnitude involved, we note that balance 
between buoyancy and drag yields the terminal radial velocity Uk = Sfl2~ 2, while [2.25] 
predicts a value which is (1 + 4(~2)2] :  I times smaller. In cases A, this factor is very close 
to 1 but in B it attains a value of 401 for the component 1.) However, this overshoot decays 
so rapidly that its influence on the behavior of ~t is not substantial. The values of ~t for 
linear and nonlinear solutions in examples A and B are in very good agreement. The 
azimuthal velocities of example B are shown in figure 5(c). The agreement of the linear 
case with the exact ~ = 0.1 solution is very good for t > 1 (the latter displays some 
oscillation for a short period). It is seen that Vc has a small positive value, while the 
dispersed phase lags considerably behind. In example A, it was found that the azimuthal 
slip velocities are very small, but a considerable backward rotation of the core is developed 
(e.g. at t = 20, V~ = - 0.134, V2 = - 0.122, Vc = - 0.122) because of the loss of angular 
momentum of the expelled dispersed particles, which is also transferred to the continuous 
phase through the large drag interaction. These results are in fair agreement with [2.26]. 

Secwr  (II) 
The solution in this sector for examples A and B, with ri = 0.5, was calculated and some 

results are presented in figures 6 and 7. Figures 6(a) and 7(a) show the projection of the 
sectors in the r, t plane. It is observed that the first characteristic propagates considerably 
slower than shock 2 in example A and faster in B. Therefore an expansion fan is formed 
in the latter case. In example A, ~j decreases in the radial direction in sector II and then 
decreases again across shock l, while the opposite occurs in example B. The radial 
variation becomes weaker as ~j decreases. Comparison of the exact solution [3.16] to the 
approximation [3.18] indicates good agreement. In particular, the value of [~t(t)- ~(t)]r 2 
was found to be constant (within about 2% of deviation) along the characteristics of 
examples A and B, as predicted by [3.22]. 

5. C O N C L U D I N G  R E M A R K S  

We have considered the centrifugal separation of  a mixture in which the dispersed 
phase consists of particles (or droplets) of the same density but of two different radii, 

i* > 2". The assumptions that the cylindrical container is sufficiently long for end effects 
to be negligible and that the relative density difference between the phases, E, is small, are 
valid for many potential applications. The volume fraction, the velocities, and the position 
of the kinematic shocks in this time dependent process were calculated for illustrative 
parameter values. The flow of the "purified" constituents is essentially similar to that 
discussed in Greenspan (1983). 
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Figure 6. (a) Example A. Trajectories o f  kinematic shocks and of  the first characteristic and 
evolution of the separation zones in a container with r~ = 0.5. (b) Example A. The volume fraction 
of the slower constituent vs radius at different times in a container with rj = 0.5. The arrow indicates 

the j u m p  into sediment layer. 

The motion is quite different from that in the gravitational settling of  a similar mixture, 
because the volume fraction ~ is here a function of  t and r while in the latter case ~ is 
usually constant between kinematic shocks. Another interesting result is that the settling 
velocity is not a monotonic function of  the particle size. However, this feature may be 
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l~igure 7. (a) Example B. For  legend, s¢¢ figure 6(a). (b) Example B. For  legend, see figure 6(b). 

illusory since it requires a fairly large value of the parameter fl when strong local rotational 
effects (i.e. formation of Taylor columns) considerably influence the drag force. On the 
other hand, the small interparticulate distance in a non-dilute suspension may be a 
compensating factor. In this regard, the comparison of the present results with simple 
experiments will perhaps be informative. 
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APPENDIX A 

The solution of the system [2.3]--[2.9] for finite e is obtained in the following way. 
Elimination of P from [2.6] and [2.8] gives 

(1 + e)[[~ [(Ui + U~ - Vk 2) - 2 Vk] -- s -- [[¢ [(Ub + Uc ~ -- Vc 2) - 2 Vc] 

[A1] 
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Using [2.12]-[2.13] and [2.3]-[2.5], we obtain 

1 ~ O~k Uk, 
Uc= 1 --Otk= t 

and 

Ub = 2Uc 2 + 2 ~tkUk 2 -- ~ ~ %U;,. 
k = l  1 - - ~ k = l  

Substitution of  [A3] in [A1] and rearrangement yields 

[A2] 

[A3] 

I + E  + 1_-- ~ k-t- 1 _ Ct j ~yUj 

1 
= ~] {RHS(A1) + 2[(1 + e)Vk -- Vc] + s}, 

1 " -(I +e)(Uk 2- Vk2)+ 3Uc 2- Vc2 + 27 ----~ ~. %Uk 2 . 
1 ~ 0 t k =  1 

[A4] 

Equation [4] explicitly defines U;, in terms of  the other variables. Explicit equations for 
V~ and Vc are easily obtained from [2.7] and [2.9], and equations for ~;~ are given by [2.3]. 
Thus, a standard system of  ordinary differential equations for (Uk, Ctk, Vk, Vc), 1 < k <_ n, 
is obtained. 


